Perovskiter bättre än kiselbaserade material i solceller

15 oktober 2024

Stabilare och mer effektiva material för solceller krävs i den gröna omställningen. Så kallade halida perovskiter lyfts nu fram som ett lovande alternativ till dagens kiselbaserade material.

Forskare vid Chalmers tekniska högskola har med hjälp av datorsimuleringar och maskininlärning fått nya kunskaper om hur dessa perovskiter fungerar, vilket är ett viktigt steg framåt.

Halida perovskiter är ett samlingsnamn för en grupp material som anses vara mycket lovande och kostnadseffektiva för flexibla och lätta solceller och olika optiska tillämpningar, såsom LED-belysning.

Detta beror på att många av dessa material absorberar och emitterar ljus på ett oerhört effektivt sätt. Men perovskitmaterialen kan brytas ned snabbt, och för att veta hur dessa material bäst ska kunna tillämpas krävs en djupare förståelse för varför det sker samt hur materialet fungerar.

Datorsimuleringar och maskininlärning

Inom gruppen perovskiter finns både 3D- och 2D-material, där de sistnämnda ofta är mer stabila. Med hjälp av avancerade datorsimuleringar och maskininlärning har ett forskarlag på institutionen för fysik på Chalmers tekniska högskola studerat en serie 2D-perovskitmaterial och därmed nått avgörande insikter i vad som påverkar deras egenskaper. 

En av forskarna i gruppen är professor Paul Erhart, som beskriver deras forskning.

-Genom att rita upp materialet i datorsimuleringar, och utsätta det för olika scenarier, kan vi dra slutsatser om hur atomerna i materialet reagerar när man utsätter det för värme, ljus, och så vidare. Med andra ord så har vi har nu en mikroskopisk beskrivning av materialet som är oberoende av vad experiment på materialet visat, men vi kan visa att beskrivningen leder till samma beteende som experimenten.

-Skillnaden mellan simuleringarna och experimenten är att vi kan se på detaljnivå exakt vad som lett fram till de slutgiltiga mätpunkterna i experimenten. Detta gör att vi nu har en mycket större insikt i hur 2D-perovskiter fungerar, säger professor Paul Erhart.

Forskningsresultaten presenteras i en artikel i ACS Energy Letters.

Källa: Chalmers tekniska högskola